IFSLT 2 Sets

2.1 How many different set are there:
$\{1,2,3,1,3,2,4\},\{1,3,4, \sqrt{4}, 2 \cdot 3\}$,
$\left\{\frac{9}{3}, 2,3,4,(-1)^{2}, 3+1\right\},\{1,2,3,4\}$.
2.2 Are the following statements true ?
a) $\{\emptyset,\{\emptyset\}\} \subseteq\{\emptyset,\{\{\emptyset\}\},\{\{\emptyset,\{\emptyset\}\}\}\}$
b) $\{\emptyset,\{\emptyset\}\} \in\{\emptyset,\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$
c) $\{\emptyset,\{\emptyset\}\} \subseteq\{\emptyset,\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$
d) $\{\emptyset,\{\emptyset\}\} \in\{\emptyset,\{\{\emptyset\}\},\{\{\emptyset,\{\emptyset\}\}\}\}$
e) $\{\emptyset,\{\{\emptyset\}\}\} \in\{\emptyset,\{\{\emptyset\}\},\{\{\emptyset,\{\emptyset\}\}\}\}$
2.3 Let
a) $A=\{\{X\}, \emptyset\}$ and
$B=\{\emptyset,\{\{\emptyset\},\{\{\emptyset\}\}\},\{\emptyset,\{\{\emptyset\}\}\},\{\emptyset\}\}$.
b) $A=\{X,\{\emptyset\}\}$ and
$B=\{\{\emptyset,\{\{\emptyset\}\}\},\{\emptyset\},\{\{\{\emptyset\}\},\{\emptyset\}\}\}$.
For what X, holds $A \in B$? For what X holds $A \subseteq B$?
2.4 Give an example of a two-element set such that every its element is its subset.
2.5 Is it true for a, A, B, \mathcal{A} ?
a) if $a \in A$ and $A \in \mathcal{A}$ then $a \in \mathcal{A}$?
b) if $a \in A$ and $A=B$ then $a \in B$?
c) if $a \in A$ and $A \neq B$ then $a \notin B$?
d) if $a \notin A$ and $A \neq B$ then $a \in B$?
2.6 What can you say about A and B if:
a) $A \cup B=\emptyset$, b) $A-B=\emptyset$, c) $A-B=B-A$.
2.7 Prove or disprove the following equalities? For the false one find simple relations between occurring sets equivalent to the given equality.
a) $A \backslash[(B \backslash C) \cup(C \backslash B)]=A \cap(B \cup-C) \cap(C \cup-B)$,
b) $(A \backslash C) \cup(B \cap C)=[(A \cup C) \cap B] \cup A$,
c) $A \cup(B-C)=[(A \cup B)-C] \cup(A \cap C)$,
d) $(A \cup B \cup C)-(A \cup B)=C$,
e) $(A-B) \cup B=A \cup B$,
f) $A \cap B-A \cap B \cap C=A \cap B-C$,
g) $[(A \cap B) \cup(C \backslash D)] \cap(D \backslash A)=(C \cap D) \backslash(A \cup B)$.
2.8 Let $A \div B=(A-B) \cup(B-A)$. Prove that
a) $A=B \Leftrightarrow A \div B=\emptyset$,
b) $A \div C \subseteq(A \div B) \cup(B \div C)$,
c) $A \div(B \div C)=(A \div B) \div C$,
d) $(A \div B) \cup(A \cap B)=A \cup B$,
e) $C \div(B \backslash A)=(A \cap C) \cup[(B \cup C) \backslash(A \cup(B \cap C))]$
f) $(B \div C) \cap(A \cup B)=[B \div(C \cap A)] \backslash\left(C \cap B \cap A^{\prime}\right)$
2.9 Prove or disprove the following equalities?
a) $\mathcal{P}(X \cap Y)=\mathcal{P}(X) \cap \mathcal{P}(Y)$,
b) $\mathcal{P}(X \cup Y)=\mathcal{P}(X) \cup \mathcal{P}(Y)$,
c) $A \times(B \cup C)=(A \times B) \cup(A \times C)$,
d) $A \times(B \cap C)=(A \times B) \cap(A \times C)$,
e) $A \times(B-C)=(A \times B)-(A \times C)$,
f) $(A \times Y) \cap(X \times B)=A \times B$ for $A \subseteq X, B \subseteq Y$,
g) $A \times B=B \times A$,
h) $(A \cap B) \times(C \cap D)=(A \cap C) \times(B \cap D)$.
2.10 Let $p(x), q(x)$ be polynomials, let $r(x)=$ $p^{2}(x)+q^{2}(x)$. What inclusions holds between the sets of there zeros.

